A human telomeric G-quadruplex-based electronic nanoswitch for the detection of anticancer drugs.

نویسندگان

  • Zahra Bagheryan
  • Jahan-Bakhsh Raoof
  • Reza Ojani
  • Parizad Rezaei
چکیده

An electronic nanoswitch is described based on the conformational change of the DNA sequence in the presence of stabilizing ligands. The new electrochemical biosensor was prepared by modifying a screen-printed graphite electrode (SPE) with functionalized SiO2 nanoparticles [(SiO2-N-propylpiperazine-N-(2-mercaptopropane-1-one) (SiO2@NPPNSH)] and Au nanoparticles (AuNPs). These nanoparticles are able to immobilize thiolated G-quadruplex DNA structures (SH-G4DNA). The SH groups on the SiO2@NPPNSH nanoparticles provide a good platform for stabilizing AuNPs on the surface of the electrode. This is due to the fact that AuNPs are able to bind to the organic SH groups on the SiO2@NPPNSH. The SH-G4DNA binds to the modified electrode by a AuNPs-S bond. The structure of SiO2@NPPNSH was characterized by scanning electron microscopy (SEM), thermo-gravimetric analysis (TGA) and infrared (IR) spectroscopy. The morphology of the modified electrode was characterized by SEM. The interaction between G4DNA and the anticancer drug, Tamoxifen (Tam), was studied in Tris-HCl buffer and [Fe(CN)6](3-) using cyclic (CV) and square wave voltammetry (SWV). The G-quadruplex formation and the interaction mechanism were identified by circular dichroism (CD) measurements. The CV current was seen to decrease with increasing concentration of Tam due to interaction between G4DNA and Tam. This biosensor is a simple and useful tool for selecting G-quadruplex-binding ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences

G-quadruplex structures formed in the telomeric DNA are thought to play a role in the telomere function. Drugs that stabilize the G-quadruplexes were shown to have anticancer effects. The structures formed by the basic telomeric quadruplex-forming unit G(3)(TTAG(3))(3) were the subject of multiple studies. Here, we employ (125)I-radioprobing, a method based on analysis of the distribution of DN...

متن کامل

Specific recognition and stabilization of monomeric and multimeric G-quadruplexes by cationic porphyrin TMPipEOPP under molecular crowding conditions

Ligands targeting telomeric G-quadruplexs are considered good candidates for anticancer drugs. However, current studies on G-quadruplex ligands focus exclusively on the interactions of ligands and monomeric G-quadruplexes under dilute conditions. Living cells are crowded with biomacromolecules, and the ≈ 200-nucleotide G-rich single-stranded overhang of human telomeric DNA has the potential to ...

متن کامل

Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole

IZNP-1 Multiple G-quadruplex units in the 3΄-terminal overhang of human telomeric DNA can associate and form multimeric structures. The specific targeting of such distinctive higher-order G-quadruplexes might be a promising strategy for developing selective anticancer agents with fewer side effects. However, thus far, only a few molecules were found to selectively bind to telomeric multimeric G...

متن کامل

Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT express...

متن کامل

G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs

Although cisplatin and its analogues have been widely utilized as anticancer metallodrugs in clinics, their serious side effects and damage to normal tissues cannot be avoided because cisplatin kills cancer cells by attacking genomic DNA. Thus the design of metallodrugs possessing different actions of anticancer mechanism is promising. G-quadruplex nucleic acid, which is formed by self-assembly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 12  شماره 

صفحات  -

تاریخ انتشار 2015